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We study the normal and the superconducting properties in noncentrosymmetric heavy fermion supercon-
ductors CeRhSi3 and CeIrSi3. For the normal state, we show that experimentally observed linear temperature
dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum
critical point �QCP� in three dimensions. For the superconducting state, we derive a general formula to
calculate the upper critical field Hc2, with which we can treat the Pauli and the orbital depairing effect on an
equal footing. The strong coupling effect for general electronic structures is also taken into account. We show
that the experimentally observed features in Hc2 � ẑ, the huge value up to 30 �T�, the downward curvatures, and
the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction
due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between
Hc2 � ẑ and Hc2� ẑ is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the
Fulde-Ferrell-Larkin-Ovchinnikov state for H� ẑ is studied. We also examine effects of spin-flip scattering
processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that
the above-mentioned results are robust against these effects. The consistency of our results strongly supports
the scenario that the superconductivity in CeRhSi3 and CeIrSi3 is mediated by the spin fluctuations near the
QCP.
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I. INTRODUCTION

In noncentrosymmetric heavy fermion superconductors,
in addition to strong electron correlation, there exists another
key property, the anisotropic spin-orbit �SO� interaction due
to the lack of inversion symmetry. The anisotropic SO inter-
action plays important roles both in the normal and the su-
perconducting state and is expected to lead to many interest-
ing phenomena.1–9 For such phenomena, electron correlation
is quite important, because it can largely enhance the effect
of the SO interaction. The interplay of the anisotropic SO
interaction and electron correlation is truly a unique nature in
noncentrosymmetric heavy fermion compounds.10–12 In par-
ticular, such an interplay in the superconducting state has
been attracting particular interest. In this context, especially,
CeRhSi3 �Refs. 13–15� and CeIrSi3 �Refs. 16 and 17� are
promising candidates for the interplay, because they are con-
sidered to be located near the antiferromagnetic �AF� QCPs
around which strong correlations through the spin fluctua-
tions are essential.

CeRhSi3 and CeIrSi3 are AF metals at ambient pressure
and begin to exhibit superconductivity at some critical pres-
sures Pc where the Néel temperatures seem to be suppressed
to absolute zero. According to the neutron experiments for
CeRhSi3, the AF ordering vector is Q= ��0.43� ,0 ,0.5��,
�0,�0.43� ,0.5�� and the nature of the AF order is spin
density wavelike.18 This is different from CePt3Si in which
the AF seems to have localized nature and the superconduc-
tivity coexists with it even at zero applied pressure.19 In
NMR experiments in CeIrSi3, 1 /T1�T / �T+��1/2 is observed
near the critical pressure, which is a characteristic behavior
of the systems with three-dimensional �3D� AF spin
fluctuations.20–22 In addition, the resistivity � in both
CeRhSi3 and CeIrSi3 above the superconducting transition

temperatures Tc in some pressure regions near the QCP
shows the anomalous T-linear dependence which is different
from ��T2 in canonical Fermi liquids.15,16

The QCP related phenomena are observed also in the su-
perconducting state. The large jump in the heat capacity at Tc
in CeIrSi3 can be attributed to the strong coupling effect due
to the spin fluctuations.23 It has strong pressure dependence
and is largely enhanced near Pc. The most striking phenom-
ena which would be related to the quantum criticality in
CeRhSi3 and CeIrSi3 appear in the behaviors of the upper
critical fields Hc2 when the applied magnetic field is parallel
to the z axis.24,25 The remarkable features of the experimental
results are as follows. �i� As the pressure approaches a criti-
cal value, Hc2 exhibits an extremely high value which ex-
ceeds the orbital limit as well as the Pauli limit estimated by
the conventional BCS theory. The observed Hc2�30 �T� is
the highest value among the heavy fermion superconductors
ever discovered, although Tc is merely Tc�1 �K�. �ii� Hc2
curves have downward curvatures and the increase is accel-
erated as the temperature is decreased, making a sharp con-
trast to any other superconductors in which the increase in
Hc2 becomes slower as T is decreased. �iii� Hc2 increases
very rapidly as the pressure approaches the critical value,
while the pressure dependence of Tc is moderate. These char-
acteristic features strongly suggest that there exists a deep
connection between the superconductivity and the magnetic
quantum criticality. In the previous study, the present authors
have shown that these experimental results are well ex-
plained as an interplay of the Rashba SO interaction due to
the lack of inversion symmetry and the spin fluctuations near
the QCP.26

On the other hand, Hc2 for in-plane fields differs from
Hc2 � ẑ in some important features. Hc2� ẑ is merely less than
10 �T� and its pressure dependence is moderate, and the Hc2
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curves exhibit usual upward curvatures.24,25 This anisotropy
in Hc2 would be related to the Rashba SO interaction, since
the Fermi surface is asymmetrically distorted by the in-plane
field and the Pauli depairing effect plays essential roles.
By contrast, the renormalization of the quasiparticle velocity
by the spin fluctuations is almost isotropic resulting in
the enhanced orbital limiting field in all directions of
the applied field. Another interesting phenomenon in the
noncentrosymmetric superconductors in applied magnetic
fields is the helical vortex phase which has been dis-
cussed theoretically.27–34 In a helical vortex phase, the
superconducting gap function is modulated in real space,
��R��exp�iQ ·R�� with the modulation vector Q
��� /	F�
BH /vF, where �, vF, 	F, and 
B are the strength
of the SO interaction, the Fermi velocity, the Fermi energy,
and the Bohr magneton, respectively. For 3D Rashba super-
conductors for H� ẑ, however, it is pointed out that this
phase modulation is just a translational shift of the vortex
lattice and has no physical importance.32–34 Several authors
also have discussed a spatially modulated superconducting
state under magnetic fields with a large Q�
BH /vF which is
continuously connected from Q��� /	F�
BH /vF.28,29,31,33

This large Q state corresponds to the Fulde-Ferrell-
Ovchinnikov-Larkin �FFLO� state.35,36 The stability of the
modulating superconducting state with the large Q depends
on the relative strength of the orbital depairing effect to the
Pauli depairing effect in the compounds.

In this paper, we study the normal and the superconduct-
ing properties in noncentrosymmetric superconductors
CeRhSi3 and CeIrSi3. We examine the anomalous T-linear
dependence of the resistivity in the normal state. In the pre-
vious studies,21,22 at very low temperatures, ��T3/2 is pre-
dicted for 3D AF spin fluctuations. The temperature depen-
dence of the resistivity for 3D AF spin fluctuations has been
studied in detail by several authors39–41 We, here, show that
��T in CeRhSi3 and CeIrSi3 is actually due to the 3D AF
spin fluctuations. For the superconducting state, the upper
critical fields both for H � ẑ and H� ẑ are investigated. For
the calculation of Hc2, we derive a general formula which
enables us to treat the Pauli and the orbital depairing effects
on an equal footing. We can also take into account the strong
coupling effect for a given electronic structure. We calculate
Hc2 on the basis of the scenario that the superconductivity in
CeRhSi3 and CeIrSi3 is mediated by the spin fluctuations and
show that the experimental features are well explained as an
interplay of the spin fluctuations and the Rashba SO interac-
tion. Although the formula is applicable for general models,
we use a phenomenological model to calculate Hc2 and ne-
glect the following two points in the model. One is the scat-
tering processes in the pairing interaction in which spins of
quasiparticles are flipped by the Rashba SO interaction. It is
pointed out that such processes can enhance the admixture of
the singlet and the triplet superconductivity,37,38 and the
strength of the admixture affects Hc2� ẑ.33 We show that the
admixture is still small in CeRhSi3 and CeIrSi3 even if we
include the spin-flip scattering processes. The other point is
the applied field dependence of the spin fluctuations. Be-
cause the applied field is so large in CeRhSi3 and CeIrSi3
especially for H � ẑ that one might think that the spin fluctua-
tions are suppressed and they cannot contribute to the en-

hancement of Hc2. We show that the spin fluctuations are
robust against the applied field H up to the strength of the
Rashba SO interaction, 
BH��, because the Rashba SO
interaction tends to fix the directions of spins on the Fermi
surface and it competes with the Zeeman effect. The consis-
tency of our results with the experiments strongly supports
the scenario that the superconductivity in CeRhSi3 and
CeIrSi3 is mediated by the spin fluctuations near the AF
QCP.

This paper is organized as follows. In Sec. II, we study
the experimentally observed T-linear dependence of the re-
sistivity. In Sec. III, a general formula for the calculation of
Hc2 is derived from the Eliashberg equation. The character-
istic features of Hc2 in CeRhSi3 and CeIrSi3 are well ex-
plained with the use of the formula in Sec. IV. We discuss, in
Sec. V, the spin-flip scattering processes in the pairing inter-
action and the magnetic-field dependence of the spin fluctua-
tions which are not included in the approximation used for
the computation of Hc2. The summary is given in Sec. VI.

II. RESISTIVITY IN NORMAL STATE

In this section, we discuss the temperature dependence of
the resistivity near the AF QCP in CeRhSi3 and CeIrSi3. In
CeIrSi3, NMR 1 /T1 behaves as 1 /T1�T /�T+� in some
pressure regions, which means that the character of the spin
fluctuations is 3D antiferromagnetic.20–22 In noncentrosym-
metric systems, however, spin fluctuations are not isotropic
due to the anisotropic spin-orbit interaction. The anisotropy
in the noninteracting susceptibility �̂0 is of the order of
� /	F1, where � is the strength of the spin-orbit interaction
and 	F is the Fermi energy. Actually, in Sec. V B, we show
that the anisotropy among �xx, �yy, and �zz is very small
within the random-phase approximation �RPA�. Therefore,
we can neglect the anisotropy of the spin fluctuations for the
discussion of the resistivity and Hc2 in CeRhSi3 and CeIrSi3.

For the systems with 3D AF spin fluctuations, the resis-
tivities are expected to be ��T3/2 according to the previous
studies.21,22 In CeRhSi3 and CeIrSi3, however, the tempera-
ture dependence is ��T near the AF QCP.15,16 The resistiv-
ity due to the 3D AF spin fluctuations was discussed by
several authors, and ��T behavior was found for the weakly
disordered systems39,40 and the clean systems.41 Here, we
show that the T-linear resistivity in CeRhSi3 and CeIrSi3 is
naturally understood in terms of the 3D AF spin fluctuations
and this behavior has basically nothing to do with the lack of
inversion symmetry.

CeRhSi3 and CeIrSi3 are heavy fermion systems with
Kondo temperature TK�50–100 �K� which is much
higher than the superconducting transition temperature Tc
�1 �K�.13,16,42 Therefore, to study the properties at T
=1–10 �K�, we consider the low-energy quasiparticles
mainly formed by f electrons through the hybridizations with
the conduction electrons. We use the following single band
model for the low-energy quasiparticles with the asymmetric
spin-orbit interaction:

S = S0 + SSF, �1�
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S0 = �
k

ck
†�− i�n + 	0�k��ck + �

k

ck
†�ℒ0�k,H� · �ck, �2�

SSF = − �
kk�q

g2

6
��q����� · ����ck+q�

† ck��ck�−q�
† ck���, �3�

where ck�
�†� is the annihilation �creation� operator of the Kram-

ers doublet of the �7 state. SSF is introduced phenomenologi-
cally and represents the interaction between the quasiparti-
cles by the strong spin fluctuations near the AF QCP. Since
CeRhSi3 and CeIrSi3 have body-centered-tetragonal lattice
structures with lattice spacing 1:1:2,14,17 the dispersion rela-
tion 	0�k� and the Rashba-type SO interaction are approxi-
mated by

	0�k� = − 2t1�cos kxa + cos kya� + 4t2 cos kxa cos kya

− 8t3 cos�kxa/2�cos�kya/2�cos kza − 2t4 cos 2kza − 
 ,

�4�

ℒ0�k,H� = �sin kya,− sin kxa − 
BHy/�,− 
BHz/�� , �5�

where a is the lattice constant and 
 is the chemical poten-
tial. Although H=0 in this section, we include the Zeeman
effect in the action for the later discussion. We fix the param-
eters as �t1 , t2 , t3 , t4 ,n ,��= �1.0,0.475,0.3,0.0,1.0,0.5� by
taking t1 as the energy unit. The Fermi surface determined by
these parameters is in qualitative agreement with the band
calculation and can reproduce the peak structures of the
momentum-dependent susceptibility observed by the
neutron-scattering experiments.18,43,44 Since we consider
f-electron systems, we assume that the above parameters in-
clude effects of the mass renormalization due to local spin
correlations with typical energy scale TK�50–100 �K�, the
Kondo temperature; i.e., t1�50–100 �K�.

The interactions are phenomenologically introduced
through the renormalized susceptibility ��q�,21,22,26,45,46

��i�n,q� = �
a

�0�
2q0

2

1 + �2�q − Qa�2 + 	�n	/��0�
−2q0

−2�
, �6�

��T,�� = �̃� t1

T + �
, �7�

where �0, q0, and �0 are, respectively, the susceptibility,
the length scale, and the energy scale of spin fluctuations
without strong correlations. These quantities are renormal-
ized through the coherence length ��T� as the system ap-
proaches the QCP. The critical exponent of � is the
mean-field value 1/2 and � is considered to decrease mono-
tonically as the applied pressure approaches the critical value
for the AF order.21,22 The temperature dependence of � is also
consistent with the recent NMR experiment for CeIrSi3.20

The ordering vectors are Q1= ��0.43� ,0 ,0.5�� /a, Q2
= �0,�0.43� ,0.5�� /a according to the neutron-scattering
experiments for CeRhSi3.18 In this study, we fix the param-

eters in ��i�n ,q� as q0=a−1, �0=3.6t1, and �̃=0.45a. The
value �0=3.6t1 is of the same order as the Fermi energy

without the effect of the spin fluctuations. �̃ is determined so

that the maximum of � would be �max�10a at the lowest
temperature in this study, which is a reasonable value for the
AF spin fluctuations. We note that the coupling constant g
should be regarded as an effective one renormalized by the
vertex corrections.47,48

The Green’s function is10–12

G���k� = �
�=�1

l����k�G��k� , �8�

l����k� =
1

2
�1 + �ℒ̂�k� · ����, �9�

G��k� =
1

i�n − 	��k� − �0�k�
, �10�

where 	��k�=	0�k�+���ℒ�k��, ℒ�k�=ℒ0�k�+��k� /�, ℒ̂�k�
=ℒ�k� / �ℒ�k��, and �ℒ�k��=��i=1

3 �Li�k��2. The self-energy is
introduced as �0= ��↑↑+�↓↓� /2, �x= ��↓↑+�↑↓� /2, �y
= ��↓↑−�↑↓� /2i, and �z= ��↑↑−�↓↓� /2 Up to the first order
in g2�0, �0, and � are expressed as

�0�k� =
T

2N
�
k�

g2��k − k���G↑↑
0 �k�� + G↓↓

0 �k��� , �11�

�x�k� =
T

2N
�
k�

g2

3
��k − k���− G↓↑

0 �k�� − G↑↓
0 �k��� , �12�

�y�k� =
T

2iN
�
k�

g2

3
��k − k���− G↓↑

0 �k�� + G↑↓
0 �k��� , �13�

�z�k� =
T

2N
�
k�

g2

3
��k − k���− G↑↑

0 �k�� + G↓↓
0 �k��� , �14�

where G��
0 is the noninteracting Green’s function. We have

neglected the constant terms in �
. In the above expression
of �
, the most dominant term is �0, and �x,y is smaller than
�0 by the factor � /	F1, where 	F is the Fermi energy. For
Rashba superconductors, �z=0 without magnetic field.

The conductivity is calculated from the Kubo formula

�
� = lim
�→0

1

�
Im K
�

R ��� , �15�

K
��i�n� = 

0

�

d�ei�n��TJ
���J��0�� , �16�

where the current operator J
 is defined as

J
 = e�
k

ck
†v̂k
ck, �17�

v̂k
 = �
�	0�k� + �ℒ0�k� · �� . �18�

After the analytic continuation, G�
AG��

R has the dominant
contribution to the conductivity. Among the four terms
G�

AG��
R ��,��=�1, for sufficiently large �, the terms G+

AG−
R and
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G−
AG+

R have no singularity with respect to the quasiparticle
damping rate. Therefore, we can neglect them, and the re-
sulting expression for �xx is

�xx = e2�
k,�

tr�v̂kxl̂k�
A v̂kxl̂k�

R ��−
� f

�	
�	k��� 1

2�k�
, �19�

�k� = − �Im �0
R�0,k� + � Re ℒ̂R�0,k� · Im �R�0,k�� , �20�

where Re ℒ̂R=Re ℒR / �Re ℒR�, lk�
�R,A�= l�

�R,A��	k� ,k�, and 	k�
=	��k�+Re �0�0,k�. Here we have neglected the vertex cor-
rections which are necessary for the current conservation
law.49–52 This is because, for the resistivity, the scatterings by
the AF spin fluctuations have large momentum transfers, and
therefore, the back-flow included in the vertex corrections
does not affect the temperature dependence of the
resistivity.52 As mentioned above, � is much smaller than �0
in amplitude, and from Eqs. �11�–�14�, the temperature de-
pendence of �0 and that of � are the same. Therefore, here-
after, we neglect � and take into account only �0 in this
study. The resistivity in noncentrosymmetric systems is al-
most the same as that in usual centrosymmetric systems. This
is different from the situations for the anomalous Hall effect,
the magnetoelectric effect, and so on for which the Rashba
SO interaction plays important roles.2,3,10–12

Before moving to the numerical calculation, we show a
simple analytical result for Im �0 which determines the
qualitative behavior of �
�. Since Eq. �11� is basically the
same as the self-energy �cen in the usual centrosymmetric
systems, we consider �cen for brevity. The self-energy at the
hot spots for a sufficiently clean system with the impurity
damping �impvF /� is calculated as

Im �cen
R �0,kF� = g2�

q



−�

� d	

2�
�coth

	

2T
− tanh

	

2T
�

�Im �R�	,q�Im Gcen
0R �	,kF − q�

� �
q

�Q�s��T�2

�q��q + �T/2�
Im Gcen

0R �0,kF − q�

� �0T ln�1 + �T/2�s� , �21�

where G0R is the retarded Green’s function including the
impurity damping �imp and �R is the retarded susceptibility
obtained from the analytic continuation of Eq. �6�. In the
above calculation, the dispersion at the hot spots has
been expanded as 	0�kF−q�=�	0�kF−Q� · �Q−q� for q�Q,
because 	0�kF−Q�=−	0�kF�=0 is satisfied at the hot
spots. Here, we have used the approximation H�z�
��d	�coth�	 /2T�−tanh�	 /2T��	 / ��q

2+	2�=1 /z−2���z+1�
−��z+1 /2�����T�2 / ��q��q+�T /2��, where � is digamma
function and z=�q / �2�T�.51,53 This approximate form be-
comes exact both for z→0 and z→�. �Q, �s, and �q are
defined as �Q=�0��q0�2, �s=�0��q0�−2, and �q=�s�1+�2�q
−Q�2�, respectively. Therefore, we have ��−Im �R�T
when the hot spots are dominant for the conductivity. This is

a general behavior for the clean 3D systems with the 3D AF
spin fluctuations.

In the numerical calculation, we neglect the real part of
the self-energy which changes the shape of the Fermi sur-
face, because such an effect is nonperturbative. We regard
	��k� as the dispersion that includes Re �0. We show the
numerical results for �xx=1 /�xx by using Eqs. �11� and �19�
for the clean limit. As shown in Fig. 1, for sufficiently small
�, the resistivity is proportional to T in a wide range of
temperatures where the hot spots are thermally blurred and
dominant for the conductivity. In a very low temperature
region where such blurring is suppressed, � is dominated by
the electrons in the cold spots. For large �, the canonical
Fermi-liquid behavior ��T2 can be seen. The calculated �
well explains the experimentally observed features of the re-
sistivity in CeRhSi3 and CeIrSi3. Therefore, we conclude that
the observed ��T above Tc is due to the AF spin fluctua-
tions.

We put a remark on the impurity effect.39,40 If the impu-
rity scattering is sufficiently strong, the anisotropic scatter-
ings by the spin fluctuations are smeared, which weakens the
singularity. We, here, simply estimate the self-energy by the
spin fluctuations �cen

sf in the presence of the impurities for
centrosymmetric systems analytically. For the system with
the strong impurity effect which smears the anisotropy by the
AF spin fluctuations, we evaluate the self-energy �cen

sf aver-
aged on the Fermi surface

�Im �cen
sfR�0,k��FS �

�
k

Im �cen
sfR�0,k�Im Gcen

0R �0,k�

�
k

Im Gcen
0R �0,k�

��
q

�Q�s��T�2

�q��q + �T/2�
� Im �cen

0R �0,q�
��

� �−1T��1 + �T/2�s − 1� , �22�

where we have defined �cen
0 �q�=−�T /N��kGcen

0 �k�Gcen
0 �k+q�.

Here, we have assumed that its T ,q dependence is moderate
and it does not contribute to the self-energy. We obtain
��T3/2 for �−2�T in dirty systems. Note that, in the case
of �−2�T3/2, we again have �−1T��1+�T /2�s−1�
�T3/4T1T−1/4=T3/2 for sufficiently low temperatures. Thus,
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FIG. 1. Resistivity vs temperature for several �. From the top to
the bottom, � / t1=0.002,0.05,0.2.
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the resistivity in the dirty systems with 3D AF spin fluctua-
tions is ��T3/2 both for �−2�T and �−2�T3/2 in agreement
with the previous studies.21,22

III. ELIASHBERG EQUATION IN MAGNETIC FIELD

A. Exact formula within semiclassical approximation

In this section, we derive a formula for the calculation of
Hc2 from the linearized Eliashberg equation in real space.
The derivation is based on the semiclassical approximation
which is legitimate for the systems with kFlH�1, where kF is

the Fermi wave number and lH=1 /�	e	H is the magnetic
length. This condition is satisfied for many superconductors
including heavy fermion superconductors, and therefore, the
resulting equation for Hc2 is applicable for a number of
compounds. Our formula is a generalization of the previous
studies54–56 and can be extended easily to more complicated
models although we use a single band model in this sec-
tion.

To derive the formula for the calculation of Hc2, we use
the linearized Eliashberg equation in real space with the vec-
tor potential A which gives a uniform magnetic field,

�����i�n,x,x�;A� = −
1

�
�
i�m

�
yy�

V���,����i�n,x,x�;i�m,y,y�;A��
zz�

G���i�m,y,z;A������i�m,z,z�;A�G�����− i�m,y�,z�;A� ,

�23�

where �x represents the summation over all lattice sites, and
the spin indices are summed over. G, �, and V are, respec-
tively, the normal Green’s function, the gap function, and the
pairing interaction. Note that, if A is fully taken into account
in the above equation, the resulting equation is gauge invari-
ant under the gauge transformation A�x�→A�x�+�f�x� and
��� ,x�→exp�ief�x����� ,x�, where � is the field operator of
the electrons. By this transformation, each factor in the equa-
tion acquires the additional phases as

G�i�n,x,x�� → expie�f�x� − f�x����G�i�n,x,x�� , �24�

��i�n,x,x�� → expie�f�x� + f�x������i�n,x,x�� , �25�

V�i�n,x,x�;i�m,y,y�� → expie�f�x� + f�x�� − f�y� − f�y����

�V�i�n,x,x�;i�m,y,y�� . �26�

In this study, however, we use the semiclassical approxima-
tion in which we do not explicitly include the effect of the
vector potential on the pairing interaction V, because the vec-
tor potential in V is not responsible for the Landau quantiza-
tion of the gap function which is the most important phe-
nomenon of the orbital effect in type-II superconductors. By
contrast, the lack of translational invariance in G and � in
the presence of the applied vector potential A is related to the
Landau quantization. Within the semiclassical approxima-
tion, the normal Green’s function is

G�i�n,x,y;A� = ei��x,y�G�i�n,x − y;A = 0� , �27�

��x,y� = e

y

x

A�s�ds . �28�

We can easily perform the integral along the
straight line s�t�=y+ t�x−y� ,0� t�1, using the relation
A�ax+by�=aA�x�+bA�x� which holds for any A giving a
uniform magnetic field H, and obtain

��x,y� = eA�x + y

2
� · �x − y� . �29�

Although the linearized Eliashberg equation is no longer in-
variant under the gauge transformation defined above within
this approximation, it is still gauge invariant under a gauge
transformation which involves only the center-of-mass coor-
dinate of the Cooper pairs.

Next, we proceed to rewrite Eq. �23� in k space. The
pairing interaction V should be decomposed into two parts as

V�i�n,x,x�;i�m,y,y�� = Vrel�i�n,x − x�;i�m,y − y��

�Vcen�x + x�

2
;
y + y�

2
� , �30�

where Vrel and Vcen are the interactions in the relative coor-
dinate and the center of mass coordinate. Here, we take Vcen

to be dimensionless. It is convenient to introduce the follow-
ing variables:

R =
x + x�

2
, r = x − x�,

Y = y − z, Y� = y� − z�,

R� =
z + z�

2
, r� = z − z�. �31�

In this coordinate, the phase factor exp�i��y ,z�+ i��y� ,z���
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which arises from G�i�m ,y ,z�G�−i�m ,y� ,z�� in Eq. �23� be-
comes

��y,z� + ��y�,z�� = eA�R���Y + Y�� + eA�r���Y − Y��

+ eA�Y�Y + eA�Y��Y�

� 2eA�R��
Y + Y�

2
+ eA�Y�Y + eA�Y��Y�.

In the second equality, the neglected term eA�r���Y−Y��
is much smaller than the first term, since for the dominant
scattering processes, �Y−Y��, �r�� �Y+Y�� are satisfied in
the systems with short range pairing interaction. The first
term represents the phase which the Cooper pair with center
of mass R� acquires. We perform the Fourier transformation
of Eq. �23� and assume V���,���

cen �R ;R�+ Y+Y�
2 �=�R,R�+�Y+Y��/2,

then we obtain

�����i�n,r,R� = −
1

�
�
i�m

1

N2�
kk�

1

N2�
pp�

�
YY�

V���,���
rel �i�n,k;i�m,k��G���i�m,p�G�����− i�m,p�������i�m,k�,R −

Y + Y�

2
�

�exp i�kr + �− k� + p�Y + �k� + p��Y��exp i�eA�Y�Y + eA�Y��Y� + eA�R −
Y + Y�

2
��Y + Y��� .

The phase factor including A is rewritten as

exp i�eA�Y�Y + eA�Y��Y� + 2eA�R −
Y + Y�

2
�

�
Y + Y�

2
������i�m,k�,R −

Y + Y�

2
�

= ei�1+i�2 exp i�−
Y + Y�

2
��R�������i�m,k�,R� ,

where ��R�=−i�−2eA�R�, �1=−e��Y+Y�� /2�2�RA�R�,
and �2= �e /2�A�Y−Y���Y−Y��. �2 is proportional to �Y
−Y��, and therefore, negligible. �1 is also small compared
with ��Y+Y�� /2, because �1�1 / �kFlH�2 while ��Y
+Y�� /2�1 / �kFlH�. Neglecting �1 and �2, we end up with the
linearized Eliashberg equation in k space in the presence of
the vector potential A,

�����k,R� = −
1

�N
�
k�

V���,����k,k��G���k� +�/2�

�G�����− k� +�/2������k�,R� , �32�

where k= �i�n ,k� and �= �0,��, and we have written Vrel as
V for simplicity. This is a well-known form of the Eliahsberg
equation and similar expressions are often used for the dis-
cussion of Hc2 in superconductors. As mentioned before, if
we define a semiclassical gauge transformation which in-
volves only R as

��k,R� → exp�i2ef�R����k,R� , �33�

this equation is gauge invariant, because, for O�A�R��
�G�k+� /2�G�−k+� /2�, e−i2efO�A+�f�ei2ef =O�A� is
satisfied. The relative coordinate is not involved in the gauge

transformation in the semiclassical approximation and
Vrel�k ,k�� does not change under the transformation.

We next proceed to rewrite the above Eliashberg equation
to perform numerical calculations. In the present study, we
denote the coordinate as �R1 ,R2 ,R3�= �Rx ,Ry ,Rz� for the per-
pendicular field and �R1 ,R2 ,R3�= �Rx ,Rz ,Ry� for the in-plane
field. With this notation, the gap function for H=He3 is ex-
panded by the Landau functions,

�����k,R� = �
n=0

�

����n�k�� Qn�R� , �34�

� Qn�R� = eiQ R �n�R1
 ,R2

 � , �35�

where �n� are the usual Landau functions, R 

= � 1/2R1 , −1/2R2 ,R3�, and Q = � −1/2Q1 , 1/2Q2 ,Q3�. The
parameters Q and  represent, respectively, the modulation
of the gap function and the anisotropy of the vortex lattice in
the R1R2 plane, and both of them are optimized to give the
largest Hc2. We introduce the operator � Q= �−i� 

−2eA�R ��−Q with � =� /�R . The Landau functions
� Qn� satisfy the following relations:

�+
 Q� Qn = �n + 1� Qn+1, �36�

�−
 Q� Qn = �n� Qn−1, �37�

where ��
 Q= lH /2��1

 Q! i�2
 Q�.

By taking an inner product of Eq. �32�, we obtain

����n�k� = −
T

N
�
k�

V�������k,k���
���

l����k��l�������− k��G̃���nn��k�������k�,R� , �38�
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G̃�1�2n1n2
�k,H� = �

m=0

�

�� Qn1
	G�1

�k +�/2�	� Qm��� Qm	G�2
�− k +�/2�	� Qn2

� , �39�

where the completeness relation �m	� Qm��� Qm	=1 is used.
Here, we have neglected the � operators in l� because they
only lead to the terms with positive powers of eH, i.e.,
l��k+��� l��k�+�l��k��=O�1�+O�1 /kFlH�, while G̃ is pro-
portional to �	e	H�−1/2 describing the nonperturbative effect
of the formation of the vortex lattice.

Within the semiclassical approximation, Eqs. �38� and
�39� are exact. For numerical calculations, however, we need
a cutoff in the summation �m=0

� which should be large
enough for the calculated results to be reliable. It is hard to
solve Eqs. �38� and �39� with such a large cutoff. So, we
introduce an alternative formula for the numerical calcula-
tion of Hc2 in the next section.

B. Alternative formula for numerical calculation

As mentioned at the end of the previous section, it is
difficult to solve the exact formula Eqs. �38� and �39� nu-
merically. Then, we approximate them by an alternative
equation. Instead of Eq. �32�, we introduce a modified
Eliashberg equation,

�����k,R� = −
T

2N
�
k�

V�������k,k���G���k� +��G�����− k��

+ G���k��G�����− k� +��������k�,R� . �40�

This equation is rewritten as

����n�k,R� = −
T

N
�
k�

V�������k,k��

��
���

l����k�,H�l�������− k�,H�G���nn�

��k�,H������k�,R� , �41�

G�1�2n1n2
�k,H� =

1

2
��� Qn1

	G�1
�k +��	� Qn2

�G�2
�− k�

+ G�1
�k��� Qn1

	G�2
�− k +��	� Qn2

�� .

�42�

This is the alternative formula for numerical calculations and
does not need an infinite summation like �m in Eq. �39�.
Equation �32� is not exactly equivalent to Eq. �40� when V
and � are k dependent as in unconventional superconductors.
However, we have confirmed that the two different formulas
give the qualitatively same results for Hc2, and the quantita-
tive difference is small. Therefore, hereafter, we use Eqs.
�41� and �42�.

With the use of the relation 1
a =�0

�dte−at for Re�a�"0, the
matrix elements are calculated as

�� Qn1
	G�1

�k +��	� Qn2
� = − is�1 �

l=0

minn1,n2� �n1!n2!

�n1 − l�!�n2 − l�!l1!
c1+

n1−lc1−
n2−l


0

�

dte−�a1/2�t2−b1ttn1+n2−2l

= − is�1 �
l=0

minn1,n2� �n1!n2!

�n1 − l�!�n2 − l�!l1!
c1+

n1−lc1−
n2−l� 2

a1
��n1+n2−2l+1�/2

Fn1+n2−2l�z1� , �43�

�� Qn1
	G�2

�− k +��	� Qn2
� = is�2 �

l=0

minn1,n2� �n1!n2!

�n1 − l�!�n2 − l�!l1!
c2+

n1−lc2−
n2−l� 2

a2
��n1+n2−2l+1�/2

Fn1+n2−2l�z2� , �44�

where

FN�z� = �
n=0

N �N

n
��− z�N−nfn�z� , �45�

fn�z� = ez2

z

�

dte−t2tn. �46�

The variables a, b, c, and z are given by

a1 = A�1
�k;H� = lH

−2�v�1�
 �k;H��2,

b1 = s�1
��1

�k;H� + i�	̃�1
�k;H� + v�1

 �k;H� · Q �� ,

z1 = b1/�2a1,

c1� = C�1�
�k;H� = − is�1

lH
−1v�1�

 �k;H� ,
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s�1
= sgn„��1

�k;H�… ,

v��
 �k;H� = v�1

 �k;H�� iv�2
 �k;H� ,

v��
 = �v�+

 v�−
 , �47�

and

a2 = A�2
�k;− H� ,

b2 = s�2
��2

�k;− H� + i�− 	̃�2
�k;− H� + v�2

 �k;− H� · Q �� ,

z2 = b2/�2a2,

c2� = C�2�
�k;− H� ,

s�2
= sgn„��2

�k;− H�… , �48�

where ���k ;H�=�n−Im �0�k ,H�, 	̃��k ,H�=	��k ,H�
+Re �0�k ,H�, and v �k ,H�=� 	̃��k ,H�.

A convenient expression of fn is obtained through the re-
currence formula which is directly derived from Eq. �46�,

f0�z� =
��
2

ez2
erfc�z� , �49�

f1�z� =
1

2
, �50�

fn�z� −
n − 1

2
fn−2�z� −

1

2
zn−1 = 0 �n# 2� . �51�

The solution is

fn�z� =
�n − 1�!!

2qn
frn

�z� + �
k=1

qn �n − 1�!!
2k�n − 2k + 1�!!

zn−2k+1,

�52�

where qn= n
2 �n : even�, n−1

2 �n :odd� and rn=0 �n : even�,
1 �n :odd�.

With the expression �Eqs. �43� and �44��, the numerical
calculation of Eq. �41� is straightforward. A similar expres-

sion for G̃ can be obtained in the same way and we can also
solve Eq. �38� numerically. As mentioned above, Eqs. �38�
and �41� give the qualitatively same results and the quantita-
tive difference is small.

The important point is that Eq. �41� allows us to calculate
Hc2 for general lattice models with arbitrary Fermi surfaces
taking into account both the orbital and the Pauli depairing
effect on an equal footing. In the Ginzburg-Landau approach,
the relative strength of the orbital and the Pauli depairing
effect is characterized by the Maki parameter �M
=�2Horb /HP, where Horb and HP are the orbital and the Pauli
limiting field, respectively. In our formulation, however, we
do not need such a parameter which is difficult to be deter-
mined experimentally. The parameter corresponding to �M in
this study is an effective mass of the quasiparticle for the
cyclotron motion

meff =
$2

t1a2 , �53�

where t1 is the energy unit of the lattice model and a is the

length unit, i.e., the lattice constant. Writing lH= l̃Ha and


BH= h̃t1 with dimensionless variables l̃H and h̃, we have a
simple identity,

l̃H
−2 =

	e	$

B

h̃

meff
. �54�

A large effective mass corresponds to a slow velocity of the
quasiparticles for the cyclotron motion leading to a suppres-
sion of the orbital depairing effect. meff can be determined
reasonably, while evaluating �M from experiments is rather
difficult because Horb and HP are not directly observed,
especially for the strong coupling superconductors. The
lattice constant is determined experimentally and we fix a
=4.0 �Å� in this study, which is consistent with the
experiments.14,17 We can also determine the value of t1 in a
reasonable way. By solving the Eliashberg Eq. �40� at H=0,

we obtain Tc= T̃ct1 in the unit of t1. Then, comparing it with
the experimentally observed transition temperature Tc

exp, we
have

t1 =
Tc

exp

T̃c

�K� . �55�

In this way, the parameters of the model are evaluated. How-
ever, the choice of all the parameters is not unique and there
remains some ambiguity especially for the strength of the

interaction on which Tc= T̃ct1 largely depends. Therefore, we
change the value of the strength of the interaction depending
on the choice of the magnitude of t1 to make Tc consistent
with the observed values. For the calculation of Hc2 in
CeRhSi3 and CeIrSi3, we use two values of t1 and compare
the results.

In addition to the treatment of the Pauli and the orbital
depairing effect, the strong coupling effect can be included
naturally in Eq. �41�. Once we calculate the pairing interac-
tion V and the self-energy � for a given Hamiltonian, they
are directly incorporated into the Eliashberg Eq. �41�. This
feature is essentially important for the study of Hc2 in
CeRhSi3 and CeIrSi3, because it is considered that they are
located near the AF QCPs and the quasiparticles interact with
each other through the strong spin fluctuations.

IV. CALCULATION OF UPPER CRITICAL FIELD

In this section, we show the numerical results calculated
from Eq. �41� with Eq. �42�. We solve the Eliashberg equa-
tion both for H=0 and H�0. For the latter, we study the two
cases: H= �0,0 ,H� and H= �0,H ,0�. In the case of H � ẑ, the
Pauli depairing effect is strongly suppressed by the aniso-
tropic spin-orbit interaction and Hc2 is determined by the
orbital limiting field Horb.

5,11,12 On the other hand, for H� ẑ,
the Pauli depairing effect is significant because of the aniso-
tropic distortion of the Fermi surface due to the Rashba SO
interaction, and Hc2 is mainly determined by the Pauli limit-
ing field HP.
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In this section, we use the action Eq. �1� to calculate Hc2.
The self-energy �0 has the real and the imaginary part which
have different effects, respectively. Re �0 only gives the de-
formation of the Fermi surface, and, as in Sec. II, it is rea-
sonable to consider that 	��k� already includes the shift due
to Re �0 and to replace 	��k�+Re �0→	��k�. On the other
hand, Im �0�i�n ,k� gives two important effects for the qua-
siparticles around the Fermi level. One is the damping factor
�=−Im �0

R and the other is the mass enhancement factor
z−1= �1−� Re �0

R�0� /���. Especially, the former gives rise to
the depairing effects of the Cooper pair due to the inelastic
scattering, which would lower Tc. For TTc, however, such
a suppression does not occur because Im �0→0 as T→0.
This property is a key for the colossal enhancement in Hc2
for H �c-axis.

We next consider the pairing interaction between the qua-
siparticles due to the strong spin fluctuations near the QCP.
They are evaluated at the lowest order in g2�0,

Vss,ss�k,k�� = −
1

6
g2��k − k�� +

1

6
g2��k + k�� , �56�

Vss̄,ss̄�k,k�� =
1

6
g2��k − k�� +

1

3
g2��k + k�� , �57�

Vss̄,s̄s�k,k�� = − Vss̄,ss̄�k,− k�� , �58�

and the other components are zero. These are directly de-
rived from Eq. �3�. Although the applied fields might affect
V, we neglect such an effect in this section. The H depen-
dence of V can be included within our approach, if the field
dependence of ��q� is clarified by some experiments. We
also note that, in Eqs. �56�–�58�, the spin-flip scattering pro-
cesses are not included. They are expected to enhance the
mixing of the spin singlet and the triplet superconductivity.
These two neglected effects are discussed in Sec. V. As noted
in Sec. II, the coupling constant g should be regarded as an
effective one renormalized by the vertex corrections.47,48

A. H=0 case

In this section, we study the gap function and the transi-
tion temperature at H=0 by solving Eq. �40�. In this case, �
does not depend on the center of mass R and G is simplified
as G����k�=G��k�G���−k�. Among the five irreducible repre-
sentations of the point group C4v for CeRhSi3 and CeIrSi3,
the most stable symmetry of the gap functions is the A1 sym-
metry which is consistent with the previous study.43 The k
dependence of the singlet gap function is �singlet
�cos�2kza�, and that of the triplet gap function is �triplet
�sin�kx,y�, as will be discussed in detail in Sec. V A. In the
previous study for Hc2 � ẑ, we have neglected the triplet part
of the gap function, because it is much smaller than the sin-
glet one in amplitude.26 In the present study, we take it into
account and show that the results in the previous study are
not changed.

In Fig. 2, the transition temperatures for this A1 symmet-
ric superconducting state for several � are shown as func-
tions of g2�0. Tc saturates for large g2�0 because the strength

of the pairing interaction and that of the depairing effect
through the normal self-energy become comparable. Note
that the dependence of Tc on � is weak.

The coupling constant g is fixed so that the calculated Tc
is of the same order as the experimentally observed Tc. In
CeRhSi3 and CeIrSi3, the Kondo temperature is TK
�50–100 �K� �Ref. 42� and the resistivity saturates around
200�300 �K�,15,17 which implies that the hopping integral
t1 in our model is t1�50–100 �K�. On the other hand, the
observed Tc is Tc�1 �K�, that is, Tc�0.01t1–0.02t1. To re-
produce this Tc in the calculation, we fix g2�0 / t1=10–15.
For these values, the system is in a strong coupling region.
The renormalization factor averaged on the Fermi surface is
z−1�1.7 for g2�0 / t1=10, and z is not sensitive to �, which is
characteristic of the 3D AF spin fluctuations.21,22,57,58 Below,
we mainly study the case of g2�0 / t1=10 for which Tc for the
minimum �=0.002t1 is Tc=0.0139t1. Setting Tc=1.3 �K�,
which is an averaged value of Tc for CeRhSi3 �Ref. 13� and
CeIrSi3,16 we have t1=93.8 �K�. We also consider the case
of g2�0 / t1=15 for in-plane fields in Sec. IV C. In this case,
similarly, we have Tc=0.0199t1�1.3 �K� and t1=65.3 �K�.

B. H ¸c-axis case

In this section, we calculate the upper critical fields for
H� ẑ. In this case, the parameter  which characterizes the
anisotropy in the RxRy plane is  =1. The other parameter Q
which should be optimized is Q=0 because, for Q to be
finite, the interband pairing on the split Fermi surface is re-
quired. However, such a pairing is energetically unfavorable.

To study Hc2, we fix the strength of the coupling constant
as g2�0=10t1. In this calculation, the admixture of the singlet
and the triplet components of the gap functions is fully taken
into account, which is neglected in the previous paper.26 The
results are almost unchanged from the previous ones even if
we include the effect of the admixture. In Fig. 3, Hc2 � ẑ
curves as functions of T for several � are shown. The Pauli
limiting field HP is large because the Rashba SO interaction
is strong, �=0.5t1"Tc�H=0��0.01t1. In such a case, the
quasiparticles are easily paired on the same band under the
applied field 
BH�. This holds generally and does not
depend on the symmetry and the dominant parity of the gap
functions for Rashba superconductors.5,11,12 The upper criti-
cal field is, therefore, mainly determined by the orbital lim-

0
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FIG. 2. Transition temperatures Tc / t1 as functions of g2�0 / t1 for
several � at H=0. The curves correspond to � / t1=0.002, 0.005,
0.01, 0.02, and 0.03 from the top to the bottom.
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iting field Horb. However, as seen in Fig. 3, the orbital limit-
ing field Horb is different from Hc2 calculated with both the
Pauli and the orbital depairing effects being taken into ac-
count, especially for large H. It would be natural to think that
this difference is a numerical artifact due to our choice of
parameters. The magnitude of � used in the above calcula-
tions is not sufficiently large for high H regions. If one uses
the large value of � /Tc

�0�, where Tc
�0�= t1exp�−1 / ��0g2�0��

with the density of states at the Fermi level �0, this difference
may disappear. In fact, in the experimental data of Hc2 both
in CeRhSi3 and CeIrSi3, no clear Pauli depairing effect can
be seen, which implies that the Zeeman effect is effectively
negligible in the compounds. However, to carry out the nu-
merical calculations of Hc2 for the larger � /Tc

�0�, we need the
large size of the k mesh and a large number of Matsubara
frequencies. We have also calculated Hc2 � ẑ for g2�0 / t1=15.
Although, in this case, the Zeeman effect much affects Hc2
compared with the g2�0 / t1=10 case, the qualitative behavior
of Horb is unchanged.

The calculated Hc2 show �i� strong � dependence and �ii�
upward curvatures, and �iii� they reach �30 �T�. All these
characteristic behaviors well explain the experimental obser-
vations in CeRhSi3 and CeIrSi3 discussed in Sec. I.24,25 The
physical reason for these characteristic behaviors in Hc2 � ẑ is
quite simple. Because, for H � ẑ, Hc2 is determined mainly by
the orbital depairing effect and the orbital limiting field Horb
can be strongly enhanced by the spin fluctuations near the
QCP. In the quantum critical regime, as T is decreased below
Tc�H=0�, the pairing interaction V��2�T� is increased in
magnitude while the inelastic scattering between electrons is
suppressed and the quasiparticle damping is decreased,
��T�=−Im �0

R�T�→0. This contrasting behaviors of the pair-
ing interaction and the depairing effect lead to the large en-
hancement in Hc2 for T→0 near the QCP. On the other hand,
as discussed in the next section, the Pauli limiting field HP is
not so strongly enhanced by the spin fluctuations at low tem-
peratures. This is a key to resolve the apparent contradiction
that although there are many heavy fermion compounds
which are considered to be located near magnetic QCPs, they
do not show such a huge Hc2 as in CeRhSi3 and CeIrSi3. In

usual centrosymmetric heavy fermion superconductors, Hc2
is considered to be mainly determined by the Pauli depairing
effect. Therefore, even if the system is close to the QCP, Hc2
is not anomalously enhanced.

The pressure ��� dependence of Hc2�T→0� shows a re-
markable feature as a result of the above-mentioned mecha-
nism. We define normalized Tc and Hc2 as functions of
�, tc����Tc�H=0,�� /Tc�H=0,�=�M�, and hc2���=Hc2�T
=Tm,�� /Hc2�T=Tm,�=�M� where �M=0.03t1 and Tm
=0.002t1. The normalized orbital limiting field horb is also
defined in the same way. In Fig. 4, tc, hc2, and horb are shown
for g2�0=10t1. For hc2, the dotted curve with triangles is
calculated from Horb, and the dotted curve with squares in-
cludes both the Pauli and the orbital depairing effect. The �
dependence of tc is moderate, while those of both hc2 and
horb are significant. As explained above, these behaviors are
understood as a result of the strongly enhanced pairing inter-
action and the suppression of the depairing effect at low
temperatures in the vicinity of the QCP��=0�. Since, in
CeRhSi3 and CeIrSi3, the SO interaction makes the super-
conductivity orbital limited, the huge Hc2 is a result of the
interplay of the Rashba SO interaction and the electron cor-
relations. Generally, such strong enhancement in the pairing
interaction and the suppression of the quasiparticle damping
at low temperatures are crucial for orbital limited supercon-
ductors, because Horb is largely affected by the electron cor-
relations compared with HP. Therefore, the enhanced upper
critical field can be considered as a universal property of the
orbital limited superconductors near QCPs. This would be
related to the recent experiments of Hc2 �a-axis in UCoGe in
which the relation between the superconductivity and the
ferromagnetism has been discussed.59 The observed Hc2

a is
huge �15 �T� while Tc�1 �K�.60,61 This issue is now under
investigation.

C. H�c-axis case

We also study Hc2 for the case of H� ẑ within the same
framework. Since in this case, the Fermi surface is distorted
asymmetrically by the in-plane field through the Rashba SO
interaction, the Pauli depairing effect is significant, which
implies that the higher Landau levels become important. Fur-
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FIG. 3. Hc2�T� at g2�0 / t1=10 for several �. The dotted curve
with triangles is the Pauli limiting field HP for � / t1=0.002 and the
solid curves with circles are orbital limiting fields Horb for � / t1

=0.002,0.03. The dotted curves with squares are Hc2 curves includ-
ing both the Pauli and the orbital depairing effects for � / t1=0.002,
0.005, 0.01, 0.02, and 0.03 from the top to the bottom. The Horb

curve for � / t1=0.03 coincides with the Hc2 curve with squares.
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thermore, the optimization parameters Q and  are nontrivial
for H� ẑ. First, at a fixed H, we optimize  which corre-
sponds to the anisotropy in the quasiparticle velocity of the
two directions perpendicular to the applied field or the aniso-
tropy in the superconducting coherence length. Since  is
characterized by the shape of the Fermi surface, the field
dependence of  is very weak. We fix the optimized  and
then optimize Q to have the maximum Hc2 for given tem-
peratures. The optimal  is  �2.3.

In Fig. 5, we show Hc2 at g2�0=10t1 for two values of �,
�M / t1=0.03, and �m / t1=0.002. Each Hc2 curve is calculated
with a single Landau function for N=0,1 ,2, respectively. A
true Hc2 curve should be calculated by a superposition of the
Landau functions. We have computed a Hc2 curve by using a
superposition of N=0 and N=1 Landau functions and found
that it almost coincides with the Hc2 curve calculated by the
N=0 Landau function only. Therefore, Hc2 is mainly deter-
mined by the N=0 Landau level and the shapes of N=0 Hc2
curves for �=�m and �M are similar. This pressure insensi-
tivity is due to the weak dependence of the Pauli limiting
field HP on the electron correlations compared with Horb. The
ratio of the calculated value of Hc2�T→0�� ẑ to that of
Hc2�T→0� � ẑ in the previous section is Hc2

� /Hc2
� �1 /3 for

�=�m. These behaviors in Hc2 are consistent with the
experiments.24,25

We turn to the discussion of the modulation vector Q.
Under the field 
BH�, the dispersion is changed as 	��k
+q ;H��	��k�+v��k� ·q+�
Bℒ̂�k� ·H. In this situation, the
momentum pair �kF�+Q� ,−kF�� is energetically degenerate
on the one band, where kF� is the Fermi momentum for the �

band and Q� satisfies v� ·Q�=−�
Bℒ̂ ·H. Note that the center-
of-mass momenta of the pairs on each band satisfy Q+
�−Q− and the electrons on each band favor the center-of-
mass momenta with opposite directions. Therefore, it is ex-
pected that for sufficiently strong H, each band favors each
Q and the resulting superconducting state would be the
FFLO state35,36 with ��%+ exp�iQ+ ·R�+%− exp�iQ− ·R�.
For small H, however, the helical vortex state with �
�% exp�iQ ·R� is considered to be stabilized in general non-
centrosymmetric superconductors. So, the situation is differ-
ent between the case of small H and that of large H. We
discuss the H dependence of the modulation of the gap func-
tion qualitatively. When the SO split interband pairing which
is small for ��Tc is neglected, the Eliashberg equation for

the diagonal element of the gap �� is of the form

����,H,Q� � �+��,H�F�+��,H,Q,�+�

+ �−��,H�F�−��,H,Q,�−�

=
1

2
��+ + �−��F�+ + F�−� +

1

2
��+ − �−��F�+ − F�−� ,

�59�

where �� is the density of states at the Fermi level for the �
band and F�� is a function depending on �� ,H ,Q ,���. The
first term in Eq. �59� is proportional to just the sum ��+
+�−� and, therefore, the electrons on each band contribute
independently. In contrast, in the second term, the difference
between the two bands plays important roles. The term is
related to the magnetoelectric effect in the superconducting
state due to the anisotropic SO interaction, which depends on
the difference in the densities of states of the two bands. This
effect is incorporated into the Ginzburg-Landau free energy
as fme�H
K
����D��+��D�����, where D
=�
− i2eA

and K
� is the coefficient of the magnetoelectric
effect.2,3,10–12,27,34 In general noncentrosymmetric supercon-
ductors, fme leads to a spatially modulated gap function with
the modulation vector Q�

me�H
K
�. In this state, the Cooper
pair is formed by the states with kF�+Qme and −kF� mo-
menta, not the �kF�+Q� ,−kF�� momenta. This effect arises
even under very weak H. However, it is pointed out that in
3D Rashba superconductors in which only Kxy =−Kyx are
nonzero, the phase exp�iQme·R� is absorbed into the Landau
function as a spatial shift ��R�→��R−R0� with a
H-dependent vector R0.32–34 Therefore, Qme does not appear
in physical observables like Hc2, although Kxy itself is non-
zero. On the other hand, under a high field, the first term in
Eq. �59� plays important roles for the optimization of Q. This
situation is similar to that of the FFLO state in usual cen-
trosymmetric superconductors. Since, as noted above, the
first term of Eq. �59� is a sum of the independent contribu-
tions from two bands, it merely favors Q+ or Q−. Therefore,
in the high field region, the candidate for the modulation
vector is Q+ and Q−. If H is applied from zero to some large
value for general noncentrosymmetric superconductors, we
would see a continuous change in Q, from Qme to Q�. The
threshold value H=H� at which Q changes from Qme to Q�

depends on the details of the system. It is pointed out that H�

becomes large as the orbital depairing effect increases.
In our study, Q is determined so that Hc2 becomes maxi-

mum for a given parameter. We find that the optimized Q
vector is parallel to the a axis, Q= �−Q ,0 ,0� for H
= �0,H ,0�. In Fig. 6, the optimized Q along the Hc2 curve for
�=�m is shown. We have two regions; the region where Q is
quite small and the other with large Q. For the small Q
region, although we have a systematic change in Hc2 with
respect to Q and can optimize it, this dependence of Hc2 on
Q would be a numerical artifact because the change in Hc2
due to nonzero Q is infinitesimally small. Actually, the small
Q region corresponding to the helical vortex state is spurious
in a 3D Rashba superconductor because of the reason men-
tioned above. It is expected that the character of the stable
vortex state is nothing but the character of the conventional
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FIG. 5. Hc2� ẑ at g2�0 / t1=10 for �=�m �square symbols� and
�=�M �circle symbols�. For each �, three curves correspond to N
=0,1 ,2 Landau levels from the top to the bottom.
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vortex state with Q=0 in the region 0&H&H�. In contrast,
for large H"H�, we have a finite Q. This large Q state
would not be a direct result of the lack of the inversion
center. Rather, it is stabilized by the pairing of the momen-
tum �kF�+Q� ,−kF�� electrons on each band. However, the
contribution to the gap function from the second term in Eq.
�59� is not negligible resulting in the shift of the degeneracy
between Q+ and Q−. Therefore, we expect that, in this high
field region, the FFLO state with the gap function �
�%+ exp�iQ+ ·R�+%− exp�iQ− ·R� can be realized. We have
performed the calculations for other parameters and con-
firmed that the threshold H=H� for the two region depends
on the effective mass meff. As meff becomes larger, H� de-
creases, and vice versa, which means that the orbital depair-
ing effect plays important roles for the determination of H�.
To discuss the stability of such a state, we need to compute
the free energy in the superconducting state and it is beyond
the linearized calculation of Hc2 performed in the present
study.

As mentioned in Sec. III, g2�0 cannot be determined
uniquely in our theory and we can change the value of g2�0
within the range for which the value of Tc is consistent with
the experiments. In the following, we study the case of
g2�0=15t1 which gives Tc�H=0,�m�=0.0199t1. In this case,
the value of t1 is t1=65.3 �K� and the effective mass of the
cyclotron motion meff is large compared with the t1
=93.8 �K� case. We show Hc2 for �=�m, �M in Fig. 7. The
left panel shows Hc2 curves calculated with the single Lan-
dau functions for N=0,1 ,2, and the right panel shows Hc2
curves calculated with the superpositions of the N=0 and the
N=1 Landau functions. For �=�m, the Hc2 curve calculated

with the N=1 Landau level is larger than that with the
N=0 Landau level at a low temperature region. In such a
region, higher Landau levels become important and the gap
function can have the nodal structure in real space due to the
nodes of the higher Landau functions.32,33 The Hc2 curves
calculated with the use of the superpositions of the N=0 and
the N=1 Landau levels almost coincide with the N=0 Hc2
curve for low H and the N=1 Hc2 curve for high H, respec-
tively. In the case for �=�m, the higher Landau levels be-
come more important than the case for �=�M, because the
orbital depairing effect is largely suppressed and the elec-
trons are strongly paired near the QCP.

V. SPIN-FLIP SCATTERINGS AND FIELD DEPENDENCE
OF SPIN FLUCTUATIONS

In the calculation shown in Sec. IV, we have neglected
two important effects, the spin-flip scattering processes in the
pairing interaction and the field dependence of the spin fluc-
tuations. Regarding the former, in the noncentrosymmetric
systems, there always exist spin-flip scattering processes
which are not included in Eqs. �56�–�58�. It was pointed out
that they can enhance the mixing of the singlet and the triplet
superconductivity,37,38 and also, the effective strength of the
Pauli depairing effect depends on the ratio of the admixture
of the gaps for H� ẑ.33 Another important point which is
neglected in the calculation in Sec. IV is the field depen-
dence of the susceptibility. Because the observed Hc2 is over
20 �T� for the c axis in CeRhSi3 and CeIrSi3, one might think
that the spin fluctuations are suppressed by such a strong
magnetic field, although we have assumed in Eqs. �56�–�58�
that the spin fluctuations are not strongly affected by the
magnetic field. These two points are examined in this section
and it is concluded that the neglect of them is a legitimate
approximation and the calculated results in Sec. IV are quali-
tatively unchanged even if we take into account the two
points.

A. Spin-flip scatterings in pairing interaction

In this section, the effects of the spin-flip scattering pro-
cesses in the pairing interaction on the superconductivity are
examined. Through a spin-flip process, such as the scattering
process in which spin ↑↓ particles are scattered as spin ↑↑
particles, the singlet and the triplet pairing states are mixed
directly. It is pointed out by several authors that this effect
can enhance the admixture of the parity even and odd
pairing.37,38 It is also discussed that, for in-plane fields, the
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FIG. 7. Hc2� ẑ at g2�0 / t1=15
for �=�m �square symbols� and �
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effective strength of the Pauli depairing effect depends on the
ratio of the triplet gap function to the singlet gap function.33

In the following, we show that, in CeRhSi3 and CeIrSi3, the
admixture of the gap functions is not so strong even if we
include the spin-flip scattering processes in the pairing inter-
action.

To investigate the effect of the spin-flip, we use the single
band Hubbard model

H = �
k

ck
†	0�k�ck + ��

k

ck
†ℒ0�k,H� · �ck + U�

i

ni↑ni↓.

�60�

Here, as in Eq. �1�, cks is the annihilation operator of the
Kramers doublet of the heavy electrons which are formed
through the hybridization with the conduction electrons. The
dispersion relation 	0�k� and the Rashba SO interaction
ℒ0�k ,H� are defined in Eqs. �4� and �5�. We fix the param-
eters as �t1 , t2 , t3 , t4 ,n ,��= �1.0,0.5,0.3,0.025,0.975,0.2� in
this section and the next section. The pairing interaction is
evaluated by the RPA,

V��,�����k,k�� = U��,���� + �Û+�̂�k + k��Û+����,���

− �Û−�̂�k − k��Û−����,���, �61�

where the matrices are defined with the notation

M̂ = �
M↑↑↑↑ M↑↑↑↓ M↑↑↓↑ M↑↑↓↓

M↑↓↑↑ M↑↓↑↓ M↑↓↓↑ M↑↓↓↓

M↓↑↑↑ M↓↑↑↓ M↓↑↓↑ M↓↑↓↓

M↓↓↑↑ M↓↓↑↓ M↓↓↓↑ M↓↓↓↓
� . �62�

The matrices Û, Û+ and Û− are defined as

Û = �
0 0 0 0

0 U − U 0

0 − U U 0

0 0 0 0
� , �63�

Û+ = �
0 0 0 − U

0 U 0 0

0 0 U 0

− U 0 0 0
� , �64�

Û− = �
0 0 0 U

0 0 − U 0

0 − U 0 0

U 0 0 0
� . �65�

The susceptibility �̂�q� within the RPA is

�̂�q� = �̂0�q��1 − Û+�̂
0�q��−1, �66�

�������
0 �q� = −

T

N
�

k

G���
0 �k�G���

0 �k + q� . �67�

Equation �61� includes the spin-flip scattering processes,
even for Vssss and Vss̄ss̄, as the virtual scattering processes.

The matrix interaction V̂ is characterized by the suscep-
tibility �̂, and, in the limit of �→0, it coincides with
Eqs. �56�–�58� if we neglect the on-site repulsive term U
and the charge susceptibility terms. As shown in Sec. V B,
�̂�q� has a peak around q���0.5� ,0 ,0.5�� and q
��0,�0.5� ,0.5��, which is consistent with the neutron-
scattering experiments for CeRhSi3, and the q dependence of
�̂�q� is almost the same as the phenomenological ��q� de-
fined by Eq. �6�.

To discuss the effect of the spin-flip processes on the ad-
mixture of the singlet and the triplet gap functions, we solve
the Eliashberg equation within the weak coupling approxi-
mation,

�����k� = −
1

N
�
k�

Ṽ�������k,k��g�������k�������k�� , �68�

where Ṽ�������k ,k�� is calculated with the use of
��������i�n=0,q� and g�������k�=T��n

G��
0 �k�G����

0 �−k�.
The pairing interaction Ṽ consists of two parts, Ṽcon corre-

sponding to the spin-conserving scattering processes and Ṽflip
including the spin-flip scattering processes. For convenience,
we introduce the four-component d vector of the gap func-
tion, using the identity matrix �0 and the Pauli matrices �,

��k� = �

=0

3

d
�k��
i�2, �69�

where d0 and d are, respectively, the singlet part and the
triplet part of the gap functions. We calculate d
�k� for two
cases: �i� one where all the elements of the interaction matrix

Ṽ�������k ,k�� are fully taken into account; and �ii� the other

where the terms Ṽcon including the spin-flip processes are
neglected. We fix the parameters as U=3.5t1, T=0.02t1. For
these parameters, the eigenvalues of the Eliashberg equation
are 0.95�1.05. The gap functions for case �i� are shown in
Fig. 8 for the singlet gap function d0 and in Fig. 9 for the

-0.3

-1.0

-1.4

2π0

2π

0

kz=π/2

kx

ky

2π0

2π

0

kz=π/2

kx

ky -1
-0.5
0
0.5
1
1.5
2

2π0

2π

0

kx=0

ky

kz

2π0

2π

0

kx=0

ky

kz

(b)(a)

FIG. 8. �Color online� The singlet gap functions dd�k� in kz

=� /2 plane �left� and kx=0 plane �right�. The spin-flip scattering
processes are fully taken into account. The broken curves represent
the Fermi surface.
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triplet gap function d1. For case �ii�, Figs. 10 and 11 show d0
and d1, respectively. In both cases, the singlet gap function
is approximately d0�K��cos�2Kza�. The ratio of the triplet
gap function to the singlet gap function defined as
r�	maxd1�k��	 / 	maxd0�k��	 is about r�1 /10 for case �i�
and r�1 /30 for case �ii�. Although r is enhanced by the
spin-flip processes, it still remains small in our system. We
have performed similar calculations for various Fermi sur-
faces, and found that, generally, the spin-flip processes can
enhance r. However, the value of r depends on the details of
the system. In CeRhSi3 and CeIrSi3, we conclude that the
admixture of the gap functions is small. Therefore, the re-
sults in Sec. IV where we have neglected the spin-flip pro-
cesses in the pairing interaction are supported. Finally, we
note that the k dependence of the triplet gap function is

largely affected by the spin-flip processes. If we write Ṽ

= Ṽcon+cṼflip with a tuning parameter c, the change in d

with respect to c is continuous, although d1 for cases �i� and
�ii� look quite different from each other. This difference in
the k dependence in d1 is not important for the discussion of
Hc2 in Sec. IV.

B. Field dependence of spin fluctuations

The field dependence of the spin fluctuations is another
effect which has been neglected in Sec. IV. The experimen-
tally observed Hc2 is so large especially for Hc2 � ẑ that one
might think that the susceptibility �̂�q� is affected by the

applied field and the spin fluctuations are weakened. We
show, however, that the effect of the applied field on �̂�q� is
strongly suppressed by the Rashba SO interaction. This is
because the Rashba SO coupling tends to fix the direction of
the spins on the Fermi surface depending on the k vectors,
which competes with the Zeeman effect. As a result, the spin
fluctuations in CeRhSi3 and CeIrSi3 are robust against the
applied magnetic field up to the strength of the Rashba SO
interaction, 
BH��.

We compute �̂�q� under finite fields H= �0,Hy ,0� or
�0,0 ,Hz�,

�
��q� = 

0

1/T

d�ei�n��TSq

���S−q

� �0�� =
1

4
���

 ��������q������

� ,

�70�

where ��������q� is evaluated within the RPA used in Sec.
V A. We fix U and T, as in the previous section, U=3.5t1 and
T=0.02t1. In Fig. 12, the H dependence of �xx, �yy, and �zz is
shown for H= �0,0 ,Hz�. At H=0, �xx�0,Qx�=�yy�0,Qy�
"�zz�0,Qx,y� are satisfied, which is consistent with the result
of the neutron-scattering experiments in CeRhSi3 that the
antiferromagnetic moment is in the ab plane.18 Here, Qx
���0.5� ,0 ,0.5�� and Qy ��0,�0.5� ,0.5��. Note that
�xx�0,Qx�"�yy�0,Qx� is satisfied because of the spin-flip
scattering processes. However, the anisotropy in the nonin-
teracting �



0 �q� is of the order of � /	F1, and therefore,
the anisotropy in �

�q� including the electron correlation
effect remains irrelevant for the discussion of Hc2 even near
the QCP. As mentioned above, for 
BH��, �

� are almost
unchanged. For 
BH'�, only �zz is suppressed. The robust-
ness of �

� for 
BH�� is a general feature of the noncen-
trosymmetric systems, since the spins for every k point are
fixed by the anisotropic SO interaction in that region. These
calculated results support the legitimacy of our neglecting
the field dependence of the pairing interaction for the calcu-
lation of Hc2. Although there is no direct observation of the
strength of the SO interaction, it is expected to be pretty
large, �"
BHc2�30
B �K�. Therefore, in CeRhSi3 and
CeIrSi3, the spin fluctuations remain so strong under applied
magnetic fields that Hc2 is strongly enhanced.

The same robustness also exists for H= �0,Hy ,0� for
which the Fermi surface is distorted anisotropically. Figure
13 shows the field dependence of �

. All of �

 are almost

-0.15
-0.1
-0.05
0
0.05
0.1
0.15

2π0

2π

0

kz=π/2

kx

ky

2π0

2π

0

kz=π/2

kx

ky

0.1

0

-0.1

2π0

2π

0

kx=0

ky

kz

2π0

2π

0

kx=0

ky

kz

(b)(a)

FIG. 9. �Color online� The triplet gap functions d1�k� in kz

=� /2 plane �left� and kx=0 plane �right�. The spin-flip scattering
processes are fully taken into account. The broken curves represent
the Fermi surface.

-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2

2π0

2π

0

kz=π/2

kx

ky

2π0

2π

0

kz=π/2

kx

ky -1
-0.5
0
0.5
1
1.5
2

2π0

2π

0

kx=0

ky

kz

2π0

2π

0

kx=0

ky

kz

(b)(a)

FIG. 10. �Color online� The singlet gap functions d0�k� in kz

=� /2 plane �left� and kx=0 plane �right�. The spin-flip scattering
processes are not taken into account. The broken curves represent
the Fermi surface.

0.05

0

-0.05

2π0

2π

0

kz=π/2

kx

ky

2π0

2π

0

kz=π/2

kx

ky

0.05

0

-0.05

2π0

2π

0

kx=0

ky

kz

2π0

2π

0

kx=0

ky

kz

(b)(a)

FIG. 11. �Color online� The triplet gap functions d1�k� in kz

=� /2 plane �left� and kx=0 plane �right�. The spin-flip scattering
processes are not taken into account. The broken curves represent
the Fermi surface.

TADA, KAWAKAMI, AND FUJIMOTO PHYSICAL REVIEW B 81, 104506 �2010�

104506-14



unchanged for 
BH��, and �yy is suppressed for 
BH'�.
These behaviors are basically the same as those for H � ẑ and
assert the robustness of the spin fluctuations against the in-
plane field.

From the above results, we see that neglecting the field
dependence in the pairing interaction for any field direction
is legitimate provided 
BHc2��. Although Hc2 is huge in
CeRhSi3 and CeIrSi3 especially for the c axis, the condition

BHc2�� is expected to be satisfied. Therefore, the discus-
sion of Hc2 in Sec. IV is not changed even if we consider the
field dependence of the spin fluctuations.

VI. SUMMARY

We have discussed the normal and the superconducting
properties in noncentrosymmetric heavy fermion supercon-
ductors CeRhSi3 and CeIrSi3. We have shown that the
T-linear dependence of the resistivity above Tc observed ex-
perimentally is naturally understood within the 3D spin fluc-
tuations near the AF QCP.

For the superconducting state, we have derived a formula
from the Eliashberg equation in real space. The formula en-
ables us to treat the Pauli and the orbital depairing effects on
an equal footing. Furthermore, by using it, we can calculate
Hc2 for strong coupling superconductors with general Fermi
surfaces. We have calculated Hc2 with the formula and have
explained well the observed features of Hc2 in CeRhSi3 and
CeIrSi3. For H � ẑ, HP is infinitely large due to the Rashba SO
interaction and Hc2 is determined by Horb. As the temperature
is lowered and the system approaches the QCP, the pairing
interaction becomes larger while the quasiparticle lifetime

becomes longer, which results in the huge Horb�Hc2 with
the strong pressure dependence. The enhancement of the or-
bital limiting field near QCPs by this mechanism would be
universal. We have also discussed the case for H� ẑ. In this
case, the Pauli depairing effect is significant because of the
asymmetric distortion of the Fermi surface and the resulting
Hc2 is moderate against the pressure. The FFLO state can be
stabilized for a large H region, although such a region is very
small. The features of the calculated Hc2 for both H � ẑ and
H� ẑ are in good agreement with the experiments. This con-
sistency supports the scenario that the superconductivity in
CeRhSi3 and CeIrSi3 is mediated by the spin fluctuations
near the AF QCP.

In the last section, we have checked the legitimacy of our
approximation used for the calculation of Hc2. In CeRhSi3
and CeIrSi3, the admixture of the singlet and the triplet gap
functions is small even if we take into account the spin-flip
scattering processes in the pairing interaction. In noncen-
trosymmetric systems, the spin susceptibility is robust
against the applied magnetic fields 
BH��. For this reason,
the spin fluctuations near the AF QCP in CeRhSi3 and
CeIrSi3 remain strong even under a large magnetic field
�30 �T�. Therefore, the above-mentioned results for Hc2 are
not changed if we refine our approximation used in the cal-
culation of Hc2.
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